Evaluation of three potential machine learning algorithms for predicting the velocity and turbulence intensity of a wind turbine wake
Shantanu Purohit,
E.Y.K. Ng and
Ijaz Fazil Syed Ahmed Kabir
Renewable Energy, 2022, vol. 184, issue C, 405-420
Abstract:
In this paper, three machine learning (ML) algorithms, Support Vector Regression (SVR), Artificial Neural Networks (ANN), and Extreme Gradient Boosting (XGBoost), are validated to estimate the velocity and turbulence intensity of a wind turbine's wake at distinct downstream distances. To this end, a series of high-fidelity numerical simulations for the NREL Phase VI wind turbine is carried out to generate training and test datasets for the three machine learning algorithms. The predicted wake velocity and turbulence intensity from the ML models are also contrasted with significant existing analytical wake models. Machine learning algorithms estimate velocity and turbulence intensity in the wake in a way commensurate to the Computational Fluid Dynamics (CFD) simulations while running at a similar pace as low-fidelity wake models. The results demonstrate that machine learning-based algorithms can predict velocity and turbulence intensity better with higher precision than the traditional analytical wake models.
Keywords: Wake velocity; Turbulence intensity; Support vector regression (SVR); Artificial neural networks (ANN); eXtreme gradient boosting (XGBoost) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121016827
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:184:y:2022:i:c:p:405-420
DOI: 10.1016/j.renene.2021.11.097
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().