Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method
Alireza Arabgolarcheh,
Sahar Jannesarahmadi and
Ernesto Benini
Renewable Energy, 2022, vol. 185, issue C, 871-887
Abstract:
Fast and effective numerical models describing the effect of platform motion on the performance of floating offshore wind turbines (FOWTs) are fundamental to assess energy harvesting potential in large offshore wind farms. The purpose of this paper is to implement a CFD-based Computationally-Efficient approach based on an actuator line model (ALM) for FOWTs aerodynamics. Such a tool aims at complementing reasonable accuracy and affordable computational effort while being able to investigate the effects of the platform motions on the wake evolution. The actuator line model for FOWTs is developed by implementing a dedicated C++ library in the OpenFOAM toolbox. In addition, a tip treatment is applied to involve the tip effects induced by the pressure equalization from the suction and pressure sides. Results show that employing ALM decreases computational cost and preprocessing time for producing appropriate computational grids, as just about 400k and 600k grids are necessary for solving two representative test cases of fixed-bottom turbines (NREL Phase VI and NREL 5-MW) with reasonable accuracy. The inclusion of platform motion is then introduced, and the results showed that ALM is capable of capturing vortices trajectory, potential blade-vortex interactions, and vortex pairing and vortex ring state phenomenon in FOWTs.
Keywords: Wind turbine; Actuator line model; FOWTs; Wake; Vortex ring state (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148121018267
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:185:y:2022:i:c:p:871-887
DOI: 10.1016/j.renene.2021.12.099
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().