Parametric and comparative study on enhanced microchannel membrane-based absorber structures for compact absorption refrigeration
Zengguang Sui,
Chong Zhai and
Wei Wu
Renewable Energy, 2022, vol. 187, issue C, 109-122
Abstract:
Novel and simple enhancement structures are proposed to improve the absorption characteristics of flat membrane-based absorbers. Firstly, a parametric study is conducted to elucidate the effect of membrane parameters on the absorption process using a two-dimensional CFD model. Results indicate that the most critical membrane parameter affecting the absorption rate is the membrane porosity compared with the membrane thickness and pore diameter. The recommended membrane porosity, pore diameter, and thickness are 0.8, 1 μm, and 60 μm, respectively. Then, a comparative study on the proposed enhancement structures is carried out. Results demonstrate that inclined groove induces solution swirling while increasing the effective heat transfer areas, and thus the absorption performance is significantly improved at lower solution pressure drops. Flow visualization shows that two counter-rotating vortices are generated inside HG (herringbone groove) and SHG (staggered herringbone grove) structures, and the longitudinal swirling flows are induced inside IG (inclined groove) and SIG (staggered inclined groove) structures. Comparisons indicate that the HG structure improves the absorption rate by 1.62 times, reducing the solution pressure drop by 19.01%. These changes from the IG structure are 1.56 and 20.77%, respectively. Therefore, the IG and HG structures are recommended.
Keywords: Absorption refrigeration system; Membrane-based absorber; Heat and mass transfer; Enhancement structure; Absorption rate; Pressure drop (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122000623
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:187:y:2022:i:c:p:109-122
DOI: 10.1016/j.renene.2022.01.052
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().