A theoretical model for an integrated wave energy extraction system consisting of a heaving buoy and a perforated wall
Yuhan Wang,
Dongxu Wang and
Sheng Dong
Renewable Energy, 2022, vol. 189, issue C, 1086-1101
Abstract:
An integrated wave energy extraction (IWEE) system consisting of a heaving buoy and a perforated wall was investigated using the linear potential flow theory. The methods for the separation of variables and eigenfunction expansion matching were adopted to determine the spatial velocity potentials. The model was verified through wave energy flux conservation and a flume experiment. Subsequently, a comparison and a parametric study was carried out to investigate the hydrodynamic performance of the IWEE system. The introduction of the perforated wall increased the maximum capture width ratio of the buoy and significantly reduced the transmitted coefficient. Compared with the IWEE system with a solid rear wall, the proposed system mainly generated a smaller reflection coefficient and the buoy endured a smaller horizontal wave force as well. The frequency where the radiation damping equals zero was not found for the buoy of the proposed system. The wave capture efficiency and wave attenuation performance could be enhanced by properly setting the geometrical parameters. Furthermore, the wave energy captured and dissipated by the proposed IWEE system was much greater than that dissipated by an isolated perforated wall, which indicates that the system is feasible in terms of energy consumption.
Keywords: Theoretical model; Integrated wave energy extraction system; Perforated wall; Hydrodynamic performance; Coastal regions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122003366
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:1086-1101
DOI: 10.1016/j.renene.2022.03.052
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().