EconPapers    
Economics at your fingertips  
 

Improved turbidity estimation from local meteorological data for solar resourcing and forecasting applications

Shanlin Chen and Mengying Li

Renewable Energy, 2022, vol. 189, issue C, 259-272

Abstract: This work presents a new method to estimate atmospheric turbidity with improved accuracy in estimating clear-sky irradiance. The turbidity is estimated by machine learning algorithms using commonly measured meteorological data including ambient air temperature, relative humidity, wind speed and atmospheric pressure. The estimated turbidity is then served as the Linke Turbidity input to the Ineichen-Perez clear-sky model to estimate clear-sky global horizontal irradiance (GHI) and direct normal irradiance (DNI). When compared with the original Ineichen-Perez model which uses interpolated turbidity from the monthly climatological means, our turbidity estimation better captures its daily, seasonal, and annual variations. When using the improved turbidity estimation in the Ineichen-Perez model, the root mean square error (RMSE) of clear-sky GHI is reduced from 24.02 W m−2 to 9.94 W m−2. The RMSE of clear-sky DNI is deceased from 76.40 W m−2 to 29.96 W m−2. The presented method is also capable to estimate turbidity in partially cloudy days with improved accuracy, evidenced by that the corresponding estimated clear-sky irradiance has smaller deviation from measured irradiance in the cloudless time instants. In sum, the proposed method brings new insights about turbidity estimation in both clear and partially cloudy days, providing support to solar resourcing and forecasting.

Keywords: Clear-sky irradiance; Turbidity estimation; Meteorological measurements; Machine learning methods (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122002567
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:189:y:2022:i:c:p:259-272

DOI: 10.1016/j.renene.2022.02.107

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:259-272