Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk
Wei Yang,
Youjian Zhu,
Yu Li,
Wei Cheng,
Wennan Zhang,
Haiping Yang,
Zhiwu Tan and
Hanping Chen
Renewable Energy, 2022, vol. 190, issue C, 893-902
Abstract:
PM emission is one of key issues in the biomass combustion of heat and power plants. In this paper, rice husk (RH) was co-combusted with cotton stalk (CSK) or cornstalk (CS) to study the PM emission behaviors. The experimental results show that the addition decreases PM1 yields by 20.13–54.65% for CSK and 45.99–76.70% for CS in comparison to the CSK or CS combustion alone. A strong synergistic effect exists during the co-combustion process, which can appreciably inhibit the generation of fine particulate matter. The synergistic effect is caused by the physical dilution effect, and mainly by the reaction between alkali metals species in cornstalk/cotton stalk ash and Si-containing species in rice husk ash to inhibit the volatilization of alkali metals. However, the PM reduction degree is also affected by the ash chemistry, especially the Si/(Ca + Mg) ratio, as confirmed by the higher synergistic effect of rice husk/cornstalk compared to rice husk/cotton stalk. The results suggest that co-combustion of biomass with high Si-containing rice husk is a promising approach to reduce PM1 emissions during biomass co-combustion.
Keywords: Co-combustion; Rice husk; Biomass; Particulate matter emission (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122004554
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:190:y:2022:i:c:p:893-902
DOI: 10.1016/j.renene.2022.03.157
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().