Insights on a Ruddlesden-Popper phase as an active layer for a solid oxide fuel cell fed with dry biogas
Sebastian Vecino-Mantilla,
Sabrina C. Zignani,
Rose-Noëlle Vannier,
Antonino S. Aricò and
Massimiliano Lo Faro
Renewable Energy, 2022, vol. 192, issue C, 784-792
Abstract:
Solid oxide fuel cell (SOFC) is a mature opportunity for producing power energy in remote areas like islands, where access to the electrical grid is not favoured, and gas distribution is the only viable approach. In this context, generally, biogas represents the most convenient fuel resources in these areas. However, the direct use of biogas in SOFCs is still an issue to be solved due to its negative effect on the conventional Ni-YSZ anode. In this study, to overcome this issue, we suggested using a protective layer coated on the anode of a commercial SOFC. A nickel manganite showing mixed ionic and electronic conductivity tailored specifically for this approach was investigated. The preliminary characterisations showed that the formation of a Ruddlesden-Popper (RP) n = 1 structure supporting fine encapsulated particles based on Ni was formed around 800 °C in consequence of the reducing environment. The electrochemical experiments carried out for 270 h demonstrated for the coated cell significant stability in the presence of dry biogas, albeit an ageing effect was noticed in the electrical percolation of both cell electrodes. The post mortem analyses revealed an attractive redox property for the nickel manganite, which partially returned to the RP n = 2 phase. Moreover, the absence of carbon deposits on the anode suggests possible applications for this approach.
Keywords: Exsolution; Renewable; Green deal; High efficient technologies; Electrochemistry; Gas-to-Power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122005444
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:192:y:2022:i:c:p:784-792
DOI: 10.1016/j.renene.2022.04.077
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().