Modelling and simulation of building integrated Concentrating Photovoltaic/Thermal Glazing (CoPVTG) systems: Comprehensive energy and economic analysis
Giovanni Barone,
Annamaria Buonomano,
Roma Chang,
Cesare Forzano,
Giovanni Francesco Giuzio,
Jayanta Mondol,
Adolfo Palombo,
Adrian Pugsley,
Mervyn Smyth and
Aggelos Zacharopoulos
Renewable Energy, 2022, vol. 193, issue C, 1121-1131
Abstract:
In this paper a novel Concentrating Photovoltaic/Thermal Glazing system (CoPVTG), developed at the Centre for Sustainable Technologies of the University of Ulster (Belfast, UK), and exploiting concentration technology, is presented and investigated. The innovative device consists in two glazed panels of which the external one is moulded to form several lenses that concentrate the solar radiation onto photovoltaic cells lines. Thanks to the specific behaviour of these lenses, the solar radiation is capable to reach the indoor environment during the winter months (when it's more useful), while it ends onto the photovoltaic cells during the summer months (reducing the solar gains while also providing electricity to the building). To increase the electricity production, a forced air flux can be created inside the glazed cavity to reduce the PhotoVoltaic cells temperature, and the obtained hot air can be exploited for diverse purposes. Finally, such device is conceived to be integrated into existing windows framing to boost its adoption in new or refurbishment construction. With the intention of studying the device under a wide range of boundary and working conditions, a dynamic simulation tool was developed in MATLAB environment and validated trough experimentally gathered data. With this tool it is possible to investigate the performance of the novel device integrated into several buildings. Specifically, a case study analysis was performed by considering an office building located in five different localities. From the conducted analyses, interesting results and design criteria are obtained. Specifically, the CoPVTG adoption returns higher electricity yield vs. standard semi-transparent window, ranging between 54 and 84% in case of cold and hot weather zones, respectively. In term of overall economic performance, the adoption co CoPVTG allow for a HVAC system running cost reduction, for the investigated case study, ranging from 20 to almost 100% depending on the considered weather zone.
Keywords: Photovoltaic window; Building integrated photovoltaic/Thermal system; Solar concentrating device; Renewable energies (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122005870
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:193:y:2022:i:c:p:1121-1131
DOI: 10.1016/j.renene.2022.04.119
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().