EconPapers    
Economics at your fingertips  
 

Biochar enhanced bioaugmentation provides long-term tolerance under increasing ammonia toxicity in continuous biogas reactors

Yixin Yan, Miao Yan, Giulia Ravenni, Irini Angelidaki, Dafang Fu and Ioannis A. Fotidis

Renewable Energy, 2022, vol. 195, issue C, 590-597

Abstract: Bioaugmentation of ammonia-tolerant methanogens into inhibited anaerobic digestion (AD) reactors was demonstrated as an in-situ remediation strategy to alleviate ammonia toxicity. This study investigated the long-term performance of a novel bioaugmentation strategy, using gel-immobilized ammonia tolerant methanogens (biogel) enhanced with biochar to alleviate ammonia toxicity in thermophilic continuous anaerobic systems. Three ammonia shocks were applied in four continuous stirred-tank reactors, namely by adding biogel (R2), biochar (R3), both biogel and biochar (R4) and control reactor (R1), respectively. The results showed R1, R2, R3 and R4 suffered 31.3%, 28.6%, 26.0% and 17.1% methane production loss, respectively at 5.5 g NH4+-N L−1. R4 achieved 100% methane production recovery compared to 13% of R1. R3 and R4 successfully acclimatized to 6.5 g NH4+-N L−1 with 71.7% and 61.8% original methane yield compared to 36.9% and 35.6% for R1 and R2, respectively. The introduced Methanoculleus thermophilus sp. along with syntrophic partners was protected by the biochar, and its relative abundance in R4 was tenfold than R2. Bioaugmentation developed a long-term ammonia resistance due to the synergistic interaction between biogel and biochar on alleviating ammonia inhibition, securing an additional gross profit of 11.8 $ ton−1 feedstock for the continuous biogas reactor.

Keywords: Ammonia shock; Biochar; Immobilized methanogens; Methanosarcina spp.; Syntrophic bacteria (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812200903X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:195:y:2022:i:c:p:590-597

DOI: 10.1016/j.renene.2022.06.071

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:590-597