Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?
L. Mehigan,
Brian Ó Gallachóir and
Paul Deane
Renewable Energy, 2022, vol. 196, issue C, 1229-1240
Abstract:
Significant increases in renewable energy are needed in electricity systems in order to reduce greenhouse gas emissions, particularly in the face of increasing electricity demand arising from the electrification of heat and transport. Greater flexibility is required in the electricity system to facilitate this, using proven flexibility providers such as batteries and interconnection or new technologies yet to be proven. This paper investigates how the relationship between battery and interconnection development and carbon price can impact carbon dioxide emissions and renewable energy curtailment. The study simulates twenty-eight scenarios and sensitivities using a unit commitment and economic dispatch model of a 2030 European power system that acknowledges that coal will not be fully eliminated from the 2030 generation mix. The results show that interconnection and battery deployment can alleviate renewable energy curtailment by over 2.4 TWh for the basecase, but a high carbon price is critical to ensuring their deployment plays a complementary role in reducing emissions. The paper also examines the impact of batteries and interconnection on solar and wind energy curtailment. It reveals that battery development nearly doubled the solar energy benefits achieved by interconnection development in some cases, while wind energy benefited more from interconnection development.
Keywords: Power system modelling; Battery energy storage systems; Cross-border interconnection; Variable renewable energy curtailment; Wind power; Solar power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122010539
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:196:y:2022:i:c:p:1229-1240
DOI: 10.1016/j.renene.2022.07.058
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().