A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower
Debiao Meng,
Shiyuan Yang,
Abílio M.P. de Jesus and
Shun-Peng Zhu
Renewable Energy, 2023, vol. 203, issue C, 407-420
Abstract:
In Reliability-based Multidisciplinary Design Optimization (RBMDO), the key performance functions of wind turbine are usually implicit, which means the performance response can only be obtained through time-consuming Physics Experiment (PE) or Finite Element Analysis (FEA). However, for practical engineering, the computational cost of repeatedly using PE or FEA is prohibitive. To tackle this challenge, in this study, an adaptive Kriging-model-assisted RBMDO strategy is proposed. The novel updated-strategy for performance function in RBMDO is discussed to find effective training samples of active learning for Kriging model. Also, a powerful decoupling strategy of RBMDO is introduced and combined with the proposed method to enhance computational efficiency further. Two case studies, including a mathematic example and a hydraulic turbine rotor bracket design example, are utilized to illustrate the advantage of the given strategy. Finally, the proposed method is applicated into an engineering design of 5 MW offshore wind turbine tower to ensure its reliability and safety.
Keywords: Reliability-based multidisciplinary design optimization; Adaptive kriging model; Decoupling strategy; Offshore wind turbine tower (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812201847X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:203:y:2023:i:c:p:407-420
DOI: 10.1016/j.renene.2022.12.062
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().