Dynamic multi-turbines spatiotemporal correlation model enabled digital twin technology for real-time wind speed prediction
Yang Li,
Xiaojun Shen and
Chongcheng Zhou
Renewable Energy, 2023, vol. 203, issue C, 841-853
Abstract:
The spatial and temporal correlation prediction model, because of its high accuracy, has become the mainstream direction in wind speed prediction field. However, the time-varying and unpredictability of wind speeds are still complex problems that negatively affect prediction result. Thus, this work aims to solve such challenges by developing a predictable multi-turbines spatiotemporal correlations framework (PMTSTCF) assisted digital twin and Internet of Things technologies. Firstly, a synthetic architecture integrating dynamic screening for correlated turbines and synchronized verification for prediction results is constructed. Then, the multi-turbines correlations model, which employs the propagation time delay and spatial similarity of wind energy on its motion paths to formulate real-time wind speed prediction task, is proposed. Meanwhile, a multi-variables verification and feedback mechanism is designed to synchronously track the spatiotemporal correlations among turbines and optimize the combinations of multiple correlated reference turbines. Finally, the predicted wind speeds are obtained by dynamical fusion of multiple single seed correlation prediction results that are predicted by leveraging the spatiotemporal dependencies. In case study, two algorithms, including support vector regression and Kalman filter, are employed to validate the effectiveness of the proposed PMTSTCF. The results demonstrate that PMTSTCF can furtherly improve accuracy and robustness of prediction model.
Keywords: Wind turbines; Real-time wind speed prediction; Multi-turbines spatiotemporal correlations; Digital twin; Verification and feedback (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148122019176
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:203:y:2023:i:c:p:841-853
DOI: 10.1016/j.renene.2022.12.121
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().