Near wake hydrodynamics and structural design of a single foil cycloidal rotor in regular waves
Abel Arredondo-Galeana,
Gerrit Olbert,
Weichao Shi and
Feargal Brennan
Renewable Energy, 2023, vol. 206, issue C, 1020-1035
Abstract:
We present a hydrodynamic and structural model to design a single foil wave cycloidal rotor in regular waves. The hydrodynamic part considers potential flow and represents the foil as a point vortex. Unsteady effects are accounted for through Theodorsen’s function. The structural part utilises beam theory to compute the bending moments and stresses on the foil of the cyclorotor. The validity of the hydrodynamic model is explored with the aid of CFD, and the CFD results are bench marked versus experimental measurements. Results show that the hydrodynamic model estimates the mean radial loading on the foil within 20%–25% in attached flow conditions, whilst it is accurate to predict the mean tangential loading only when operating close to stall, at maximum lift conditions. Because the optimal structural operation of the rotor is in attached flow conditions, and close to stall, we utilise the coupled model to design a rotor that operates optimally for a range of different sea conditions. We find that with careful dimensioning of the radius and span, power extraction in regular waves can be optimised, whilst the structural penalty is kept constant at the allowable stress level.
Keywords: Wave energy converters; Wave cycloidal rotor; Attached and vortical flow; Potential flow; Beam theory; Structural design (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123002124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:206:y:2023:i:c:p:1020-1035
DOI: 10.1016/j.renene.2023.02.068
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().