EconPapers    
Economics at your fingertips  
 

Numerical investigation of a shell-and-tube thermochemical reactor with thermal bridges: Structurale optimization and performance evaluation

Chengcheng Wang, Hui Yang, Lige Tong, Binjian Nie, Boyang Zou, Wei Guo, Li Wang and Yulong Ding

Renewable Energy, 2023, vol. 206, issue C, 1212-1227

Abstract: Thermochemical heat storage is a key technology to solve the mismatch between supply and demand of renewable energy and realize long-term energy storage. This work is concerned about a shell-and-tube thermochemical energy storage reactor and its aim is to address a challenge associated the low reaction rate from the tube centre of the reactor due to low thermal conductivity of the storage material. We proposed the integration of porous copper thermal bridges into the reactor and examined the performance enhancement with a validated mathematical model. By optimizing the structural parameters (numbers, thickness, and porosity) of the thermal bridge, the discharging rate and water temperature of the reactor can be maximized while the fan's electricity consumption is reduced. The results show that, with the addition of the thermal bridges with optimal structural parameters, the total heat release and water peak temperature lift can be increased by 11.33% and 39.75%, respectively, with the peak outlet water temperature reaching 59.02 °C. Reducing air velocity from 0.428 m/s to 0.107 m/s, the fan's electricity consumption can be reduced by 85.07% and 91.72% in the charging and discharging processes, which can be reduced by another 62.34% and 16.55%, respectively, after adding the thermal bridge.

Keywords: Thermochemical energy storage; Reactor; Numerical simulation; Thermal bridge; Charging and discharging performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123002318
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:206:y:2023:i:c:p:1212-1227

DOI: 10.1016/j.renene.2023.02.080

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:1212-1227