EconPapers    
Economics at your fingertips  
 

Combining a deep learning model with multivariate empirical mode decomposition for hourly global horizontal irradiance forecasting

Priya Gupta and Rhythm Singh

Renewable Energy, 2023, vol. 206, issue C, 908-927

Abstract: Accurate and reliable global horizontal irradiance forecasting is one of the solutions for the associated problems with grid-integrated PV plants. This study proposes a novel hybrid MEMD-PCA-GRU model for an hour ahead of GHI forecasting. The multivariate empirical mode decomposition (MEMD) breaks the multidimensional data into multivariate subseries termed intrinsic mode functions (IMFs). MEMD helps to remove the naturally produced non-stationary and nonlinear deficiencies within the target series and meteorological predictors. A large number of obtained IMFs necessitates the application of a dimensionality reduction technique. Principal component analysis (PCA) is used here to identify the most informative features from a large set of IMFs. Finally, the gated recurrent unit (GRU) is utilized to predict GHI at four places in India. The performance of the proposed model is tested against some hybrid and standalone models. Double decomposition techniques enhanced the GRU performance by a minimum % RMSE (% MAE) improvement of 48.38 (24.97). The proposed model reported an average nRMSE (RMSE) of 7.82% (36.85 W/m2) across four locations. The lowest error metrics of the proposed model reflect the relatively stable and good performance compared to studied single-stage and hybrid benchmark models under different climatic conditions.

Keywords: Global horizontal irradiance; Deep learning; Gated recurrent unit; Time series decomposition; Principal component analysis; Hybrid model (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123001969
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:206:y:2023:i:c:p:908-927

DOI: 10.1016/j.renene.2023.02.052

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:206:y:2023:i:c:p:908-927