EconPapers    
Economics at your fingertips  
 

Harvesting spatiotemporal correlation from sky image sequence to improve ultra-short-term solar irradiance forecasting

Jingxuan Liu, Haixiang Zang, Tao Ding, Lilin Cheng, Zhinong Wei and Guoqiang Sun

Renewable Energy, 2023, vol. 209, issue C, 619-631

Abstract: With photovoltaic power being increasingly integrated into power grid, accurately forecasting solar irradiance is of critical for ensuring stable and economical operation of power systems. The forecast accuracy in ultra-short-term horizons can be greatly improved by employing ground-based sky images. Although wide range of computer vision methods have been used for modelling, effectively extracting spatiotemporal features from sky image sequence is still a tough task. In this study, a sparse spatiotemporal feature descriptor is introduced to enhance the process of dynamic spatiotemporal information extraction from continuous grayscale sky images, while spatial pyramid pooling is used for feature refinement. Parallelly, dense convolutional network is used to extract static features from the nearest single-frame RGB sky images. Both dynamic and static spatiotemporal features were adequately extracted and subsequently fused for the multi-step prediction of global horizontal irradiance. In addition, various competitive models in object detection are adopted as benchmarks for comparison. The experimental results revealed that the proposed method outperformed baseline models, with up to 5.51% reduction on normalized root mean square error (NRMSE) and 9.38% improvement on ramp event forecast. The proposed method can be widely applied to photovoltaic stations equipped with all-sky-imagers.

Keywords: Solar irradiance forecasting; Ground-based sky image; Object detection; Spatial pyramid pooling (search for similar items in EconPapers)
Date: 2023
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123004251
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:209:y:2023:i:c:p:619-631

DOI: 10.1016/j.renene.2023.03.122

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:renene:v:209:y:2023:i:c:p:619-631