Effect of charging operating conditions on open zeolite/water vapor sorption thermal energy storage system
Shichao Gao,
Shugang Wang,
Yi Sun,
Jihong Wang,
Peiyu Hu,
Jiaxu Shang,
Zhenjun Ma and
Yuntao Liang
Renewable Energy, 2023, vol. 215, issue C
Abstract:
Sorption thermal energy storage (STES) is one of the most promising solutions to realize inter-seasonal thermal energy storage for building heating. However, the analysis of charging operation parameters on the thermal energy storage performance of STES system is insufficient. In this paper, a STES experimental bench using zeolite 4A/water vapor as the sorption working pairs was built, and the charging/discharging experiments were conducted. The thermal energy chain during the full charging-discharging process was analyzed. The experimental results indicated that approximately 60% of the thermal energy provided by the heater was directly lost through the reactor outlet in the charging process, which seriously hindered the improvement of the thermal energy storage performance of the STES system, such as the coefficient of performance (COP). In addition, the influence of charging conditions on the thermal energy storage performance of the system was also investigated. Both the improvement of charging temperature and the reduction of charging air humidity are beneficial to enhancing the thermal energy storage performance of the STES system. When the charging temperature was 150 °C, the energy storage density of zeolite reached a maximum of 251 kWh/m3. The COP of system reduced by 28% when the relative humidity of charging air rose from 20% to 70%. The effect of the volume flow rate of charging air on the thermal energy storage performance of the system is insignificant. The COP of system maintained around 0.212 at different charging air volume flow rates.
Keywords: Sorption; Thermal energy storage; Zeolite; Charging operating conditions; Coefficient of performance (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123009473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:215:y:2023:i:c:s0960148123009473
DOI: 10.1016/j.renene.2023.119033
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().