EconPapers    
Economics at your fingertips  
 

Advanced multimodal fusion method for very short-term solar irradiance forecasting using sky images and meteorological data: A gate and transformer mechanism approach

Liwenbo Zhang, Robin Wilson, Mark Sumner and Yupeng Wu

Renewable Energy, 2023, vol. 216, issue C

Abstract: Cloud dynamics are the main factor influencing the intermittent variability of short-term solar irradiance, and therefore affect the solar farm output. Sky images have been widely used for short-term solar irradiance prediction with encouraging results due to the spatial information they contain. At present, there is little discussion on the most promising deep learning methods to integrate images with quantitative measures of solar irradiation. To address this gap, we optimise the current mainstream framework using gate architecture and propose a new transformer-based framework in an attempt to achieve better prediction results. It was found that compared to the classical CNN model based on late feature-level fusion, the transformer framework model based on early feature-level prediction improves the balanced accuracy of ramp events by 9.43% and 3.91% on the 2-min and 6-min scales, respectively. However, based on the results, it can be concluded that for the single picture-digital bimodal model, the spatial information validity of a single picture is difficult to achieve beyond 10 min. This work has the potential to contribute to the interpretability and iterability of deep learning models based on sky images.

Keywords: Solar energy; Forecasting; Computer vision; Deep learning; Vision Transformer; Sky images (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123008583
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008583

DOI: 10.1016/j.renene.2023.118952

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123008583