EconPapers    
Economics at your fingertips  
 

Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector

Elumalai Vengadesan, Pathinettampadian Gurusamy and Ramalingam Senthil

Renewable Energy, 2023, vol. 216, issue C

Abstract: A parabolic dish collector (PDC) with a flat surface solar receiver performs poorly due to more heat loss, although reaching higher temperatures. Hence, the current study introduces a novel flat surface receiver finned with staggered square cross-sectioned tubular fins made of cost-effective materials that improve the effective heat transfer area and water flow structure. A real-time investigation is carried out at different water flow rates (0.025 kg/s, 0.033 kg/s, and 0.042 kg/s). Maximum temperature difference of 33 °C, 28 °C, and 23 °C were measured when water flows at 0.025 kg/s, 0.033 kg/s, and 0.042 kg/s, respectively. Water boiling began earlier at lower mass flow rates and was delayed as the flow rate increased. The average heat transfer coefficient and receiver power are 242 W/m2.K and 2.7 kW, respectively, at 0.042 kg/s. Peak thermal and exergy efficiencies of 71% and 8.11%, respectively, are obtained, which is higher than the efficiency of existing flat surface receivers. Furthermore, the cost per kWh of useful energy is 46.2% less than the cost of electricity produced by the coal power plant. Therefore, the current flat surface receiver might enhance the PDC's thermal performance more effectively than previous receivers with minimum energy cost.

Keywords: Flat surface receiver; Multifunctional fins; Heat loss reduction; Thermal efficiency; Low-cost energy (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812300962X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:216:y:2023:i:c:s096014812300962x

DOI: 10.1016/j.renene.2023.119048

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:216:y:2023:i:c:s096014812300962x