EconPapers    
Economics at your fingertips  
 

Adaptive multistep model predictive control for tubular grid-connected solid oxide fuel cells

Linfei Yin and Dongduan Liu

Renewable Energy, 2023, vol. 216, issue C

Abstract: In the research of renewable energy power generation, tubular grid-connected solid oxide fuel cells with the apparent advantage in voltage regulation have been widely applied in power systems. Recently, a model predictive control has been applied to consider the nonlinear constraints of tubular grid-connected solid oxide fuel cells, which cannot be considered by a proportional-integral-derivative controller. Both model predictive control and proportional-integral-derivative controller achieve only 80% fuel efficiency. An adaptive multistep model predictive control (AMMPC) is proposed to improve the fuel efficiency of tubular grid-connected solid oxide fuel cells and simultaneously consider systemic thermodynamics and electrochemistry constraints. The AMMPC contains the advantages of adaptive control and multistep model predictive control. Both adaptive two-step model predictive control and three-step model predictive control are designed for tubular grid-connected solid oxide fuel cells. With the more accurate prediction ability, the AMMPC improves the fuel efficiency of tubular grid-connected solid oxide fuel cells with higher fuel efficiency (86.5%) than model predictive control (80%) and proportional-integral-derivative (80%). Both feasibility and effectiveness of the AMMPC are verified with high fuel efficiency under simple and complex power demands cases.

Keywords: Adaptive multistep model predictive control; Adaptive control; Grid-connected solid oxide fuel cells (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812300976X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:216:y:2023:i:c:s096014812300976x

DOI: 10.1016/j.renene.2023.119062

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:216:y:2023:i:c:s096014812300976x