Energy, exergy and economic evaluation of a solar enhanced ejector expansion heat pump cycle
Lingeng Zou,
Ye Liu and
Jianlin Yu
Renewable Energy, 2023, vol. 217, issue C
Abstract:
Recently, heat pump technology has become the preferred method in drying field. However, most existing heat pump cycles use the single-stage vapor compression with expansion valve, which has the problem of large throttling loss. The use of ejector in the heat pump cycle can recover part of the expansion work and enhance cycle performance. Therefore, this paper proposes a solar-enhanced ejector expansion heat pump cycle (SEEHP) for drying application. Based on the conventional ejector expansion heat pump cycle (EEHP), the introduction of solar energy could not only improve the heating capacity of the cycle, but also improve the performance of the ejector. The energy, exergy and economic evaluation methods are used to theoretically analyze the EEHP and SEEHP. Compared to the EEHP, the energy analysis shows that the SEEHP with R134a refrigerant has a 23.64%–39.82% increase in heating coefficient of performance (COPh) and 32.79%–33.96% increase in volumetric heating capacity (Qcv) for the given condensing temperature range. Exergy analysis results reveal that the exergy destruction of SEEHP is mainly concentrated in the solar collector, indicating that the solar collector has the greatest potential for optimization in practical application. Economic analysis shows that investing in solar energy in the SEEHP is beneficial.
Keywords: Heat pump; Ejector; Solar enhanced; Alternative refrigerants (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123010339
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:217:y:2023:i:c:s0960148123010339
DOI: 10.1016/j.renene.2023.119119
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().