Self-compensation and attenuation mechanisms of carbide slag in multicycle thermochemical heat storage
Yupeng Feng,
Xiannan Hu,
Xuhan Li,
Man Zhang,
Shahong Zhu and
Hairui Yang
Renewable Energy, 2023, vol. 218, issue C
Abstract:
Utilizing industrial solid waste carbide slag for thermochemical heat storage presents an inexpensive and high-energy-storage-density solution with potential industrial applications. Investigating the performance of carbide slag in thermochemical heat storage cycles can offer insights for efficient resource utilization within the field of heat storage. This study examined the characteristics of cyclic heat storage (dehydration) and heat release (hydration) of carbide slag by establishing a multicycle thermochemical heat storage experimental system combined with advanced characterization techniques. We found that carbide slag underwent complete dehydration and incomplete hydration. The decrease in pore volume within the 3–11 nm pore size range in the dehydrated carbide slag product was the primary cause for the diminishing hydration conversion with increasing cycles. The change in the Ca(OH)2 content, serving as an effective thermochemical heat storage material within the carbide slag, primarily resulted from the gain effect of CaCO3 conversion and the loss effect of incomplete CaO hydration. Based on this phenomenon, we proposed the mechanisms of self-compensation and attenuation of carbide slag during thermochemical heat storage cycles using nitrogen as the direct-contact heat transfer fluid. When air (containing 400 ppm CO2) was used as the direct-contact heat transfer fluid, the thermochemical heat storage capacity of the carbide slag decreased from the initial 805.2 J/g to 205.7 J/g after 20 cycles. Our findings provide valuable guidance for regulating the multicycle heat-storage performance of carbide slag.
Keywords: Carbide slag; Thermochemical heat storage; Multicycle performance; Self-compensation and attenuation mechanisms (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123011990
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123011990
DOI: 10.1016/j.renene.2023.119284
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().