Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method
Irene Karijadi,
Shuo-Yan Chou and
Anindhita Dewabharata
Renewable Energy, 2023, vol. 218, issue C
Abstract:
A precise wind power forecast is required for the renewable energy platform to function effectively. By having a precise wind power forecast, the power system can better manage its supply and ensure grid reliability. However, the nature of wind power generation is intermittent and exhibits high randomness, which poses a challenge to obtaining accurate forecasting results. In this study, a hybrid method is proposed based on Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Empirical Wavelet Transform (EWT), and deep learning-based Long Short-Term Memory (LSTM) for ultra-short-term wind power forecasting. A combination of CEEMDAN and EWT is used as the preprocessing technique, where CEEMDAN is first employed to decompose the original wind power data into several subseries, and the EWT denoising technique is used to denoise the highest frequency series generated from CEEMDAN. Then, LSTM is utilized to forecast all the subseries from the CEEMDAN-EWT process, and the forecasting results of each subseries are aggregated to achieve the final forecasting results. The proposed method is validated on real-world wind power data in France and Turkey. Our experimental results demonstrate that the proposed method can forecast more accurately than the benchmarking methods.
Keywords: Wind power; Forecasting; Deep learning; Long short term memory; Data preprocessing; Artificial Intelligence (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123012727
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012727
DOI: 10.1016/j.renene.2023.119357
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().