Performance enhancement of a solar-assisted pulverized coal power system by integrating a supercritical CO2 cycle
Chao Li,
Yang Sun,
Tianjiao Bi and
Rongrong Zhai
Renewable Energy, 2023, vol. 219, issue P1
Abstract:
Current solar-assisted pulverized coal power (SPCP) systems lack the efficient cascading utilization of solar energy, resulting in its wastage. Therefore, there is a need to optimize the integration scheme between solar energy and pulverized coal power systems. In this study, the integration of two different supercritical CO2 cycles with SPCP systems is proposed to enable the cascaded utilization of solar energy. The thermal performances of the two proposed power systems are presented. Then, a sensitivity analysis is performed to examine the effects of supercritical CO2 cycle variables on the system. Finally, an economic evaluation is conducted to examine and compare the economic performance. The results demonstrate significant reductions in the extraction steam superheat and the exergy loss in feedwater heaters. Compared to SPCP systems, both proposed systems exhibit a decrease in the standard coal consumption rate by approximately 4.7 g/kWh. Sensitivity analysis shows that the CO2 mass flow rate has the most important effect on the system performance. The economic evaluation reveals that the cost of electricity for the two suggested systems increases by only about 0.04 cents/kWh. In summary, the findings suggest that the proposed power systems exhibit superior thermal performance and confirm its economic feasibility in the future.
Keywords: Solar-assisted pulverized coal power system; S-CO2 cycle; Thermodynamic performance; Sankey diagram (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123014167
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123014167
DOI: 10.1016/j.renene.2023.119501
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().