EconPapers    
Economics at your fingertips  
 

High-resolution spatiotemporal assessment of solar potential from remote sensing data using deep learning

Mitja Žalik, Domen Mongus and Niko Lukač

Renewable Energy, 2024, vol. 222, issue C

Abstract: Spatiotemporal assessment of solar potential is one of the most promising solutions to find suitable locations for future photovoltaic systems’ placement. However, accurate assessment of solar potential on large areas can be challenging due to missing data or computational complexity. In this paper, a fully convolutional neural network based method for high-resolution spatiotemporal assessment of solar potential by using remote sensing data is presented. The method is trained and validated on the area of 32 km2 of the Maribor city, Slovenia, and tested on the 6 different locations in Slovenia and Germany. The proposed method was tested against the simulation algorithm, which utilized isotropic Liu Jordan diffuse model or anisotropic Perez model with sky view factor based shading. On average, a normalized root mean square error (NRMSE) of 6.06% and mean absolute percentage error (MAPE) of 4.29% was achieved in test locations against the simulation based on Liu-Jordan model. When training the fully convolutional neural network models against the ground truth, generated with more advanced Perez diffuse model, the average NRMSE was 8.37% and MAPE of 10.90% was achieved across all test locations. Additionally, it was shown that the proposed method can assess solar potential in high-resolution from the input in lower resolution with higher accuracy than the simulation algorithm, while being up to 1500-times faster.

Keywords: Deep learning; Fully convolutional neural network; LiDAR data; Digital elevation model; Solar energy; Solar potential (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148123017834
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017834

DOI: 10.1016/j.renene.2023.119868

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017834