A cohesive structure of Bi-directional long-short-term memory (BiLSTM) -GRU for predicting hourly solar radiation
Neethu Elizabeth Michael,
Ramesh C. Bansal,
Ali Ahmed Adam Ismail,
A. Elnady and
Shazia Hasan
Renewable Energy, 2024, vol. 222, issue C
Abstract:
Uncertain weather scenarios have an impact on the output of solar farms and therefore affect the security of the grid. It is advantageous for power system operators to forecast solar energy to balance the load generation and for optimal power scheduling. The most promising deep-learning techniques to combine weather variables with precise measurements of solar irradiance are not widely discussed. To close this research gap and produce better prediction results, this article aims to formulate and compare two distinctive deep learning algorithms for using time series forecasting approaches to predict solar irradiance. For multivariate data, the forecasting technique Bi-Directional Long Short-Term Memory (BiLSTM), and BiLSTM-GRU (Gated Recurrent Unit) Dropout, are examined in this study. The output results from the proposed model are compared with other benchmark models based on performance error measurements, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Coefficient of Determination (R2) and Mean Absolute Percentage Error (MAPE). It was found that the proposed hybrid method, BiLSTM-GRU with dropout outperformed the other methods in terms of solar irradiance predicting accuracy. The analysis presented the best RMSE of 1.55 and MAE of 1.13 for BiLSTM and RMSE of 1.40 and MAE of 0.91 for BiLSTM-GRU architecture using hyperparameter tuning. The comparison results show that the prediction accuracy is improved by tuning the hyperparameters.
Keywords: Bi-directional long short-term memory; Deep learning; Gated recurrent unit; Solar irradiance; Solar forecasting; Stacked LSTM (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124000089
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:222:y:2024:i:c:s0960148124000089
DOI: 10.1016/j.renene.2024.119943
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().