EconPapers    
Economics at your fingertips  
 

Climate, water, hydropower, wind speed and wind energy potential resources assessments using weather time series data, downscaled regional circulation models: A case study for Mono River Basin in the Gulf of Guinea region

Lamboni Batablinlè, Serge Dimitri Bazyomo, Félicien D. Badou, Hounkpè Jean, Kamou Hodabalo, Djibib Zakari, Magolmeena Banna and Agnidé Emmanuel Lawin

Renewable Energy, 2024, vol. 224, issue C

Abstract: Hydropower and wind energy are important renewable energies source in Gulf Guinea region, but they are sensitive to climate change, because the changing climate may alter atmospheric and hydrological conditions. In this study, firstly we analyzed the historical hydro-climate data in connection with changes in Mono river of Gulf Guinea region discharge and their associated impacts on hydropower generation and assessed the future hydropower availability in different climate scenarios. Secondly, statistical methods are used to examine past and future wind speed (WS) and wind energy potential. We used historical data (1981–2010) obtained from the National Meteorology Agency in Togo and Benin and a multi-model ensemble for future projections data (2021–2050) of eight selected Regional Climate Models (RCMs) under Representative Concentration Pathway (RCP) under scenarios 4.5 and 8.5. We found in the recent past years that the temperature and evaporation increase during dry season, while flows and hydropower generation decreased. The multi-model ensemble used have announced that in general, the decreasing trend of the rainfall and increasing trend of temperature is projected to be higher in RCP 8.5 than RCP 4.5, in the near future (2021–2050). Overall, the annual hydropower potential the hydropower will decrease between 8 and 19.3% under the RCP4.5 and 9 and 29% under the RCP8.5 while the monthly hydropower potential is projected to decrease by 4–41% under the RCP4.5 and by 6–47% under the RCP8.5 in the same period. Concerning the wind speed and the potential wind power, the observed results show that both the Weibull and Rayleigh approximations provided a better fit for the wind speed data. The projected of wind speed and wind power density (2021–2050) at an annual timescale is similar to the monthly timescale of wind speed and wind power density at 90 m height. The multi-model ensemble indicate that projected wind speeds (WS) are between 5 and 10 m/s under the RCP4.5 and, between 3 and 12 m/s under the RCP8.5 while wind power density is projected by 15–250 w/m2, and by 13–357 w/m2 under the RCP4.5 and under the RCP8.5, respectively. South and North of Mono basin, have higher WPD and are promising for installing wind turbines for small-scale power generation.

Keywords: Hhydropower; Wind power; Climatic data; Models; Mono basin; Gulf of Guinea region (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124001642
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001642

DOI: 10.1016/j.renene.2024.120099

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001642