A robust I–V curve correction procedure for degraded photovoltaic modules
Baojie Li,
Clifford W. Hansen,
Xin Chen,
Demba Diallo,
Anne Migan-Dubois,
Claude Delpha and
Anubhav Jain
Renewable Energy, 2024, vol. 224, issue C
Abstract:
To enable health monitoring and fault diagnosis of PV modules using current-voltage characteristics (I–V curves), it is generally necessary to correct the I–V curves measured under different environmental conditions to the standard condition. The most common correction methods are those from IEC 60891: 2021 standard. However, these methods can introduce significant errors when dealing with degraded PV modules due to the inability to account for changes in resistance. To address this, we propose an improved I–V curve procedure, denoted Pdynamic, which considers different types of degradation by dynamically deriving the correction coefficients from the measured I–V curves. To evaluate the performance, we simulate I–V curves across a wide range of irradiance and temperature for the healthy and degraded module, where the degradation involves increased series resistance, decreased shunt resistance, or both. The results reveal that Pdynamic can produce corrected I–V curves closer to the reference ones than Procedures 1, 2, and 4 of the IEC 60891:2021 standard. Moreover, Pdynamic exhibits resilience to both seasonal fluctuations and varying levels of degradation. These results highlight Pdynamic as a promising and robust I–V curve correction method, particularly for degraded PV modules. A Python-based open-source tool for this procedure is also available at https://github.com/DuraMAT/IVcorrection.
Keywords: IV curve; IV curve correction; Photovoltaic; PV module; PV degradation (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124001733
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001733
DOI: 10.1016/j.renene.2024.120108
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().