EconPapers    
Economics at your fingertips  
 

Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst

Andi Mulkan, Nurin Wahidah Mohd Zulkifli, Husni Husin, Ahmadi, and Irvan Dahlan

Renewable Energy, 2024, vol. 224, issue C

Abstract: The current study builds upon the prior research (Mulkan et al., 2023) [1], which successfully created an innovative solid catalyst from discarded jackfruit peel waste (JPW) to produce biodiesel from waste cooking oil (WCO). Expanding on this initial research, our study's primary objective is to assess the performance and emissions attributes of a diesel engine when utilizing blends of WCO biodiesel and conventional diesel fuel under full load conditions, covering engine speeds from 1200 to 2400 rpm. The results show that as engine speed increases, brake-specific fuel consumption (BSFC) decreases by an average of 16.67%–22.69%, while brake thermal efficiency (BTE) increases by 16.67%. Engine torque initially decreases and drops significantly at higher speeds, while brake power (BP) proportionally rises. Notably, substantial reductions in CO emissions (ranging from 6.11% to 48.63%) were observed at all engine speeds compared to pure diesel. However, CO2 and NO emissions generally increased, although some fuel samples demonstrated reductions. Hydrocarbon emissions decreased with higher engine speeds, while smoke opacity increased, with slight reductions observed for specific fuel samples at 1800–2400 rpm. In conclusion, blending WCO biodiesel synthesized using the JPW catalyst with pure diesel results in improved engine performance and reduced exhaust emissions.

Keywords: WCO; Biodiesel; Engine performance; Exhaust emissions; Unmodified diesel engine; JPW catalyst (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124002106
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002106

DOI: 10.1016/j.renene.2024.120145

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002106