EconPapers    
Economics at your fingertips  
 

Solar to hydrogen conversion by a 25 cm2-photoelectrochemical cell with upscaled components

O. Barbera, C. Lo Vecchio, S. Trocino, A. Carbone, A.S. Aricò, V. Baglio and G. Giacoppo

Renewable Energy, 2024, vol. 224, issue C

Abstract: An innovative tandem photoelectrochemical cell with a scaled-up active area from 0.25 to 25 cm2 based on low-cost and non-critical raw materials was employed to produce green hydrogen by water splitting. It uses a photoanode/membrane/photocathode tandem cell configuration in which a hematite-based photoanode is layered on a fluorine-doped tin oxide glass for the oxygen evolution reaction, CuO is deposited on a hydrophobic gas diffusion layer as the photocathode for the hydrogen evolution reaction and an anion exchange membrane is used as the electrolyte and gas separator. The solid membrane's low hydrogen and oxygen crossover guarantees the operational stability of the tandem photoelectrochemical cell and the efficient separation of water-splitting products. Significant efforts have been focused on scaling up the cell. It has allowed obtaining, for the first time, a 25 cm2 unit cell prototype. Appropriate design approaches have been considered to optimise water/gas management, current collection, gas-tightness and clamping. The adopted architecture allowed for the reduction of the bias-potential from −1.23 V, generally employed to investigate PEC cells, up to −0.6/-0.4 V 20 h-durability tests demonstrated good resistance to corrosion, showing a constant photocurrent. Efficiency at −0.6 V was about 0.2%. Selective hydrogen production was demonstrated by mass spectrometric analysis.

Keywords: Photoelectrochemical tandem cell; Hydrogen production; Hematite photoanode; Anion exchange membrane; Copper oxide photocathode; Cell prototype (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124002192
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002192

DOI: 10.1016/j.renene.2024.120154

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002192