DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade
Jian Xu,
Longyan Wang,
Jianping Yuan,
Zhaohui Luo,
Zilu Wang,
Bowen Zhang and
Andy C.C. Tan
Renewable Energy, 2024, vol. 224, issue C
Abstract:
Horizontal axis tidal turbines (HATT) conversion of ocean tidal waves into electricity represents a promising source of clean and sustainable energy. However, the widespread adoption of these turbines has been hindered by persistent challenges, primarily stemming from the high costs associated with their construction and maintenance; and efficient conversion of tidal energy. Addressing these challenges is paramount for propelling tidal turbine technology and ensuring its economic viability. This study focuses on the efficient conversion of tidal energy into electricity by optimization of composite material turbine blades which is a complex problem that spans multiple physical domains, including hydrodynamics (the study of water flow) and structural mechanics (the study of material behavior under loads). To tackle these multifaceted challenges, we introduce an innovative DLFSI (Deep learning fluid-structure interaction) model which represents a groundbreaking approach to predict and optimize the hydrodynamic and structural performance of tidal turbine blades. DLFSI leverages the power of convolutional neural networks (CNN) to recognize intricate geometric features of turbine blades rapidly and accurately. By seamlessly integrating the blade element momentum (BEM) theory and finite element method (FEM), the DLFSI model facilitates comprehensive predictions of how composite blades will perform in real-world conditions. With this approach, we have achieved substantial improvements in critical performance metrics such as the power coefficient (a measure of energy conversion efficiency) and the maximum equivalent stress (a key indicator of structural integrity). The innovative DLFSI model presented in this study holds the potential for practical application within the realm of tidal turbine design and is poised to catalyze the sustainable progression of renewable energy technologies.
Keywords: Horizontal axis tidal turbines (HATT); Composite blade; Multi-objective optimization; Convolutional neural networks (CNN); Blade element momentum (BEM); Finite element method (FEM) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124002441
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002441
DOI: 10.1016/j.renene.2024.120179
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().