EconPapers    
Economics at your fingertips  
 

Comparative study of natural ester oil and mineral oil on the applicability of the immersion cooling for a battery module

Jiahao Liu, Hao Chen, Manjiang Yang, Silu Huang and Kan Wang

Renewable Energy, 2024, vol. 224, issue C

Abstract: The immersion cooling for lithium-ion batteries based on insulating oil has gained a great deal of interest and research, while most of them still lie in the exploratory phase with numerical and model-scale experimental efforts, and applicable cooling mediums as well as the cooling mechanisms are still inconclusive. In this paper, an oil-immersed cooling system for a battery module is designed to verify the feasibility of natural ester oil by comparing with the currently popular mineral oil. The thermal behaviors of the battery module immersed in static and dynamic insulating oils are discussed. It is found that both mineral oil and natural ester oil can efficiently decrease the battery temperature and limit the temperature difference among the batteries to less than 2 °C. For both insulating oils, the cooling effect increases with increasing liquid flow rate, but this improvement gradually weakens. With increasing Reynolds numbers, the forced convection replaces the natural convection as the dominant mechanism, especially in the natural ester oil-based system where the forced convection dominates even in the entire Re range. The comparative results demonstrate that natural ester oil can serve as a potential candidate for the battery immersion cooling.

Keywords: Lithium-ion battery; Mineral oil; Natural ester oil; Immersion cooling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124002520
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002520

DOI: 10.1016/j.renene.2024.120187

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124002520