EconPapers    
Economics at your fingertips  
 

Process optimization of chemical looping combustion of solid waste/biomass using machine learning algorithm

Z.T. Yaqub, B.O. Oboirien and H. Leion

Renewable Energy, 2024, vol. 225, issue C

Abstract: Chemical Looping Combustion (CLC) is a carbon capture technology that uses an oxygen carrier to transfer the oxidizing agent to the fuel for combustion. This study used different machine learning algorithms, Artificial neural network and Response surface methodology to estimate the surface region process performance and optimize the process condition for the CLC of different solid fuels waste paper, plastic waste, and sugarcane bagasse blends. Based on the combustion efficiency, CO2 yield and CO2 capture efficiency responses, A high performance correlation (R2 > 0.8) was obtained for all the combustion parameters analyzed. The perturbation plot derived from the RSM analysis indicated that the most significant input parameters include the steam to fixed carbon, blend ratio and the fuel reaction temperature.

Keywords: Chemical looping combustion; Waste paper; Plastic waste; Combustion efficiency; CO2 capture efficiency; ANN; Simulation; RSM (search for similar items in EconPapers)
Date: 2024
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400363X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:225:y:2024:i:c:s096014812400363x

DOI: 10.1016/j.renene.2024.120298

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu (repec@elsevier.com).

 
Page updated 2024-12-28
Handle: RePEc:eee:renene:v:225:y:2024:i:c:s096014812400363x