Experimental and numerical analysis of power take-off control effects on the dynamic performance of a floating wind-wave combined system
Zheng Chen,
Jili Sun,
Jingqing Yang,
Yong Sun,
Qian Chen,
Hongyang Zhao,
Peng Qian,
Yulin Si and
Dahai Zhang
Renewable Energy, 2024, vol. 226, issue C
Abstract:
The integration of wave energy converters (WEC) into floating offshore wind turbines (FOWT) is regarded as a promising approach for comprehensively harnessing deep-sea energy and reducing the levelized cost of energy. This study aims to investigate the WEC power take-off (PTO) control effects on the dynamic performance of a floating wind-wave combined system, wherein three heaving-type WECs are integrated into a semi-submersible FOWT. In particular, the hydraulic PTO is modelled as a Coulomb damping system to enable a more realistic analysis. The aero-hydro-servo-elastic-mooring coupled numerical simulations and 1:50 wave basin experimental data demonstrate good agreement. It is observed that wave power production varies significantly with different control settings, potentially reaching 24.0 % of the overall hybrid energy production with proper control parameters. Furthermore, platform pitch oscillation generally shows a decreasing trend with increasing damping forces under below-rated and rated conditions, while showing minimal influence when above-rated. Conversely, tower base damage equivalent load (DEL) tends to initially decrease and subsequently increase across all examined conditions. This consistent convexity indicates the potential use of DEL as a performance index for optimising PTO control. In summary, power increment, motion reduction, and load mitigation could be achieved concurrently with appropriate control design. For instance, an extra 0.48 MW wave power could be produced under the rated condition, while a 10.4 % reduction in tower base DEL and a 6.57 % mitigation in platform pitch oscillation could also be achieved at the same time.
Keywords: Floating offshore wind turbine; Wave energy converter; Hydraulic power take-off control; Coulomb damping; Coupled numerical simulation; Wave basin experiment (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400418X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s096014812400418x
DOI: 10.1016/j.renene.2024.120353
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().