Effect of angle of incidence on the optical-electrical-thermal performance of photovoltaic insulated glass units
Keke Liu,
Meng Wang,
Jinqing Peng,
Sihui Li,
Yimo Luo and
Xiaofeng Zhang
Renewable Energy, 2024, vol. 226, issue C
Abstract:
Photovoltaic insulated glass units (PV-IGUs) possess significant potential for achieving simultaneous power generation, thermal insulation, and natural lighting in buildings. However, the optical properties of PV-IGUs are influenced by real-time variations of the Angle of Incidence (AOI), thereby intricately impacting its optical-electrical-thermal performance. Therefore, an optical-electrical-thermal coupling model was developed to evaluate the impact of real-time AOI on the optical-electrical-thermal performance of cadmium telluride (CdTe) PV-IGUs. Through outdoor experiments, the model's accuracy was validated with acceptable errors between experimental and simulated data. After validation, the optical-electrical-thermal performance of PV-IGUs were analyzed under different operational conditions and AOIs. Results revealed that when AOI exceeds 45o, there is a reduction in absorptance up to 60.76% in terms of optical performance. Notable variations were observed across AOIs regarding thermal-electrical performance, with a maximum temperature difference of 16.08 °C for the PV cells and a maximum disparity in power generation of 140.51 Wh/m2 under solar radiation of 800W/m2. Additionally, an increase of AOI and decrease of photovoltaic coverage ratio (PVR) for PV-IGUs result in higher variation of the solar heat gain coefficient (SHGC), reaching up to 69.81% when PVR is 0.1. This study established a reliable foundation for accurately evaluating the performance of PV-IGUs.
Keywords: Photovoltaic insulated glass units; Angle of incidence; Optical-electrical-thermal model; Solar heat gain coefficient (SHGC); Photovoltaic coverage ratio (PVR) (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124004294
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004294
DOI: 10.1016/j.renene.2024.120364
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().