Investigation of the performance of a parabolic trough collector outfitted with annular absorber tubes
Antar M.M. Abdala and
Fifi N.M. Elwekeel
Renewable Energy, 2024, vol. 226, issue C
Abstract:
The current work recommends a novel absorber tube for parabolic trough solar collectors. Annular absorber tubes with and without spiral tape have been investigated as an alternative to conventional absorber tubes. This work employs numerical analysis through the usage of CFD code. The pitch ratio (P/D), width ratio (W/D), and height ratio (H/D) of the spiral tape are each different. Within the annular absorber tube, these ratios have an impact on the performance of heat transfers, pressure drop, and entropy generation. The results reveal that an annular absorber tube without spiral tape has a higher Nu ratio than a conventional absorber tube. In an annular absorber tube with P/D = 1.4, the Nusselt number increases. In an annular absorber tube, the spiral tape thickness ratio has no effect. The average Nu ratio is 24.5% greater at a height ratio of 0.3 than it would be in an annular absorber tube without spiral tape. The annular absorber tube's spiral tape's pitch ratio, thickness ratio, and height ratio all generate less total entropy than a conventional absorber tube does. The wall temperature of the absorber tube with the lowest spiral tape pitch ratio decreases, which results in a reduction in the thermal stress on the absorber wall. On the other hand, spiral tape and an annular absorber tube have a higher friction ratio. It exceeds the friction ratio of the annular absorber tube without spiral tape by 41.7 times.
Keywords: Parabolic trough; Annular; Absorber tube; Spiral tape; Entropy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124004300
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004300
DOI: 10.1016/j.renene.2024.120365
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().