Hydrodynamic response analysis of a hybrid TLP and heaving-buoy wave energy converter with PTO damping
J.S. Rony and
D. Karmakar
Renewable Energy, 2024, vol. 226, issue C
Abstract:
In the present study, the numerical investigation is performed to analyse the hydrodynamic performance of circular and concentric arrangements of cone-cylinder-type heaving point absorber wave energy converter (WEC) around a Frustum Tension-Leg Platform (FTLP) based on potential flow theory. The responses of the single FTLP and the FTLP-WEC hybrid system are analysed for the rated wind speed of a 5 MW wind turbine to observe the influence of the WECs on wind power absorption of wind turbines supported on FTLP. The presence of the FTLP floating wind turbine platform and other WECs affects the hydrodynamic coefficients of the WEC. The influence of the hybrid system on the hydrodynamic coefficients is analysed on determining the ratio of the hydrodynamic coefficients for a single WEC system to those for a hybrid system. Further, the study analyses the instantaneous wave power absorption for the WECs arranged around the FTLP in a circular and concentric pattern. The hydraulic power take-off for the hybrid system with two different control strategies is then discussed to improve the wave power absorption of the WECs. The study observed higher wave power absorption of the WECs with the influence of the PTO system. The mean interaction factor and the capture width ratio of the hybrid system are further studied to understand the influence of array arrangement for the WECs. The hybrid system is noted to have favourable dynamic responses for different environmental factors and contributes positively in increasing power output.
Keywords: Frustum Tension-Leg Platform (FTLP); Wave energy converter (WEC); Hydrodynamic coefficients; Power take-off (PTO); Mean interaction factor (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124004452
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124004452
DOI: 10.1016/j.renene.2024.120380
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().