Tidal turbine hydrofoil design and optimization based on deep learning
Changming Li,
Bin Liu,
Shujie Wang,
Peng Yuan,
Xianpeng Lang,
Junzhe Tan and
Xiancai Si
Renewable Energy, 2024, vol. 226, issue C
Abstract:
The optimal design of hydrofoils is critical to improve the hydrodynamic performance of the tidal turbine. However, the global optimization of hydrofoils is limited by the high dimensionality of the design space, which requires extensive computational fluid dynamics simulations. This paper proposes an interactive framework for hydrofoil design and optimization based on deep learning. Generative adversarial networks are used to parameterize the hydrofoil design, which automatically learns representations from existing hydrofoils and controls new hydrofoil generation using fewer variables to reduce optimization dimensions. Moreover, the surrogate model based on convolutional neural networks is constructed, which realizes the mapping of hydrofoil design and operating parameters to hydrodynamic performance parameters. The framework can generate a large number of smooth and realistic hydrofoils with three design variables and quickly predict the performance, enabling effective optimization design of hydrofoils. The results show that the optimized hydrofoil shapes have larger lift-to-drag ratios than those of the common hydrofoils. Furthermore, the optimized hydrofoil is applied to the design of 3D horizontal axis tidal turbine blades. The simulation results show that the framework is effective and stable, which can facilitate the design of tidal turbine rotors and provide hydrofoils with higher power coefficients.
Keywords: Deep learning; Horizontal axis tidal turbine blades; Convolutional neural networks; Computational fluid dynamics; Hydrofoils design and optimization (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005251
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005251
DOI: 10.1016/j.renene.2024.120460
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().