EconPapers    
Economics at your fingertips  
 

Z-scheme ZnCdS/NiCo-LDH photocatalyst followed dual-channel charge transfer via Au-intercalation for renewable hydrogen production

Ping Bai, Junyu Lang, Yinshu Wang, Haojie Tong, Zelin Wang, Bingbing Zhang, Yiguo Su and Zhanli Chai

Renewable Energy, 2024, vol. 226, issue C

Abstract: Exploration of effective and renewable photocatalysts is essential for solar to hydrogen conversion technologies. However, the application of some photocatalysts with great potential, such as ZnCdS, are seriously limited by the sluggish charge transfer/separation and unavoidable light corrosion. In this work, Au/ZnCdS/NiCo-LDH ternary heterojunction was constructed by introducing Au nanoparticle mediator in core-shell ZnCdS/NiCo-LDH, which exhibits an enhanced H2 production rate of 4.89 mmol g−1 h−1 under visible light irradiation and unexpected recyclability with 6.2 % rate reduction after 15 consecutive cycles. The enhanced photocatalytic performance is attributed to the dual pathways (Z-scheme and localized surface plasmon resonance) enabled in Au/ZnCdS/NiCo-LDH, which improves the separation of photo-generated carriers, accelerates the electron transport, and provides active sites for photocatalytic oxidation. This work provides a promising technology to jointly improve photocatalytic activity and stability by modulating the interfacial carrier dynamics of photocatalysts.

Keywords: Photocatalytic H2 evolution; Heterojunction; ZnCdS; Layered double hydroxides; Surface plasmon resonance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005494
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005494

DOI: 10.1016/j.renene.2024.120484

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:226:y:2024:i:c:s0960148124005494