EconPapers    
Economics at your fingertips  
 

Data-driven health state estimation and remaining useful life prediction of fuel cells

Ke Song, Xing Huang, Pengyu Huang, Hui Sun, Yuhui Chen and Dongya Huang

Renewable Energy, 2024, vol. 227, issue C

Abstract: Proton exchange membrane fuel cells (PEMFCs) can revolutionise transportation energy and promote environmentally friendly development. The purpose of this study is to predict the state of health (SOH) of PEMFCs and provide guidance for fuel cell maintenance. Under changing power demand situations, a practical method based on the Fréchet distance is proposed to predict the SOH, along with an empirical model to differentiate between the running-in and degradation periods. The proposed method does not require complex and expensive testing instruments and has a relative error of approximately 4.3 %. A voltage drop prediction model is established for steady power demand situations using the particle swarm optimisation-extreme learning machine (PSO-ELM) algorithm. Different activation functions and hidden layer neurons are investigated to enhance prediction accuracy. This study shows that the model effectively tracks the decreasing trend in the transmission voltage of the PEMFC stack. Additionally, a comprehensive analysis framework is developed to address the issue of the possibility of missing system parameters in practical applications. The influence of the system parameters on voltage drop prediction is thoroughly analysed, and the necessary parameters for accurate prediction are defined, providing theoretical guidance for practical monitoring and data collection.

Keywords: Fuel cell; State of health; Life prediction; Discrete fréchet distance; PSO-ELM; Importance analysis (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124005561
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005561

DOI: 10.1016/j.renene.2024.120491

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005561