Design and techno-economic assessment of a standalone photovoltaic-diesel-battery hybrid energy system for electrification of rural areas: A step towards sustainable development
T. Adefarati,
R.C. Bansal,
R. Naidoo,
K.A. Onaolapo,
M. Bettayeb,
P.K. Olulope and
A.A. Sobowale
Renewable Energy, 2024, vol. 227, issue C
Abstract:
The recent persistent power interruption in Nigeria has significantly disrupted commercial activities, resulting in a magnificent economic loss, supply chain ripples and revenue loss. As a result, harnessing renewable energy sources to generate electricity has become a popular choice for satisfying ever-increasing load demand and reducing apprehensions on global warming and reliance on depleted fossil fuels. The goal of this research is to determine whether powering a remote community with a hybrid energy system (HES) is technologically, financially and environmentally viable. The optimum design of a standalone HES with the diesel generator (DG), photovoltaic (PV) and battery storage system (BSS) is provided in this study to satisfy the electrical power needs of a farm settlement in Kura, Nigeria by considering generation constraints and load demand. This research work presents a genetic algorithm (GA) to minimize wearing cost of the system (WCS), minimize the land needed for the installation of the DG and PV system, minimize the total annual cost of the system (TAC) and maximize the benefit to cost ratio and revenue from electricity consumption. The findings of the research showed that PV/BSS/DG system is a prospective solution to satisfy the load requirements with least TAC of 67374 $/yr, annual maintenance cost (AMC) of 2808.2 $/yr, annual fuel cost (AFC) of 32300 $/yr and annual emission cost (AEC) of 774.2023 $/yr. The outcomes of the study show that a considerable TAC, AMC, AFC and AEC savings of 26766 $/yr (28.43 %), 2808.2 $/yr (53.09 %), 32300 $/yr (25.4 %) and 774.2023 $/yr (60.69 %) are recorded when compared with using DG alone. The control approach applied in this study has reduced the operational capacity of the DG and prevented about 41157 kg/yr, 419.19 kg/yr and 22.52 kg/yr of CO2, NOx and SO2 emissions from being injected into the atmosphere. The simulation outcomes of the research demonstrate that the developed model can significantly reduce cost of electricity in rural communities with the application of HES. Hence, a 45.36 % cost of energy saving has been accomplished through the energy management system introduced in the proposed HES. The study's outcomes can be used as benchmarks to help many countries to enhance access to electricity, raise their living standards and stimulate economic growth. The application of the proposed HES in remote communities can result in greater economic and environmental benefits to a general population of rural dwellers. The findings of the research work are beneficial to designers, independent power providers, investors, researchers and electricity consumers that are looking for a feasible power solution.
Keywords: Battery storage system; Benefit to cost ratio; Diesel generator; Hybrid energy system; Net present cost; Renewable energy resources (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124006219
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006219
DOI: 10.1016/j.renene.2024.120556
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().