Comprehensive investigation of almond shells pyrolysis using advance predictive models
Arslan Khan,
Saad Saeed,
Erum Pervaiz,
Asif Hussain Khoja,
Salman Raza Naqvi,
Sana Saeed and
Imtiaz Ali
Renewable Energy, 2024, vol. 227, issue C
Abstract:
This research focused on comprehensive characterization and assessment of almond shells pyrolysis for bioenergy potential through thermogravimetric analysis from ambient temperature to 900 °C at different heating rates of 10, 15, and 20 °C/min in inert environment. Iso-conversional model-free methods like Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS) were used for kinetic analysis. Average activation energies (Ea) evaluated using Friedman, OFW, and KAS methods were 198.45 kJ mol−1, 204.43 kJ mol−1, and 204.97 kJ mol−1, respectively. The evaluation of thermodynamic parameters, including ΔH‡, ΔG‡, and ΔS‡, was also assessed. The average values of ΔH‡, ΔG‡, and ΔS‡, were found to be 199.4 kJ mol−1, 172.17 kJ mol−1 and 42.60 kJ mol−1 respectively. The reaction mechanism was obtained from combined kinetics. A high R2 value of 0.9933 demonstrates strong agreement between the combined kinetic analysis results and the experimental data. The distribution activation energy model was assessed employing four pseudo elements identified as PC1, PC2, PC3, and PC4. Artificial Neural Network (ANN) and Boosting regression trees (BRT) were used for the prediction of Ea of almond shells pyrolysis. The detailed understanding of thermokinetics and creating customized predictive and innovative modelling techniques like ANN and BRT sets a new benchmark for developing customized models for thermochemical conversion of varieties of almond shells.
Keywords: Almond shells; Pyrokinetics; DAEM; ANN; BRT (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124006360
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006360
DOI: 10.1016/j.renene.2024.120568
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().