EconPapers    
Economics at your fingertips  
 

Collaborative monitoring of wind turbine performance based on probabilistic power curve comparison

Yanting Li, Peng Wang, Zhenyu Wu and Yan Su

Renewable Energy, 2024, vol. 231, issue C

Abstract: A wind farm is usually equipped with multiple wind turbines of the same type. These wind turbines often work under same complex conditions. Accurate performance degradation monitoring is crucial for ensuring the reliable operation of wind farms and reducing maintenance costs. Motivated by this, this article develops a new wind turbine performance degradation monitoring scheme, which is based on pairwise comparison of the probability power curves of different wind turbines in a wind farm. Firstly, covariate matching is used to eliminate the inherent differences in meteorological variables of different turbines within the same data segment. Next, two probabilistic wind power curves, the quantile power curve and density power curve, model the functional relationship between the meteorological variables and wind power output. Then, deviation vectors are generated by calculating the deviation of probabilistic power curves between each pair of wind turbines. Finally, a directional Hotelling T2 control chart is proposed to monitor the deviation vectors. We apply the new method on the real data of a wind farm in East Britain. Results show that the proposed monitoring technique can monitor wind turbine performance degradation more precisely and comprehensively than the existing approaches.

Keywords: collaborative monitoring; probabilistic power curve; wind turbine performance; directional Hotelling T2control chart (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812400987X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s096014812400987x

DOI: 10.1016/j.renene.2024.120919

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812400987x