EconPapers    
Economics at your fingertips  
 

Enhancing the estimation of direct normal irradiance for six climate zones through machine learning models

Eduardo Rodríguez, Enrique López Droguett, José M. Cardemil, Allan R. Starke and Lorena Cornejo-Ponce

Renewable Energy, 2024, vol. 231, issue C

Abstract: The evaluation of solar radiation is essential for large-scale solar energy systems, as assessing economic feasibility early on depends on accurate solar radiation data. Accurate sensors are needed to characterize the solar resource. Due to a scarcity of solar radiation data, numerical models are commonly used to estimate solar radiation components using meteorological variables that are simple or cheap to measure. In recent years, the use of machine learning (ML) algorithms has gained significant popularity in the estimation of solar radiation components. In this study it is proposed a post-processing approach using the separation model outcomes as input variables to estimate the diffuse fraction. Three ML models are employed (XGBoost, Random Forest, and Multilayer Perceptron) to boost the accuracy in terms of three statistical indicators: nRMSE, nMBE, and R2. The employed technique takes a distinctive approach by using reference stations to train the machine learning models and, afterward, make the assessment at the site under study. The results show an improvement in terms of precision of individual separation model outcomes. Thus, the proposed methodology may serve as a reliable approach for estimating solar radiation components in cases where historical data for a specific place of interest is not accessible.

Keywords: Direct normal irradiance; Separation model; Machine learning; Köppen–Geiger classification (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124009935
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935

DOI: 10.1016/j.renene.2024.120925

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124009935