Improved liquid air energy storage process considering air purification: Continuous and flexible energy storage and power generation
Yuxin Liu,
Dongling Yu,
Lige Tong,
Peikun Zhang,
Wei Guo,
Zhongqi Zuo,
Li Wang and
Yulong Ding
Renewable Energy, 2024, vol. 231, issue C
Abstract:
Liquid air energy storage (LAES) processes have been extensively analyzed due to their low constraints and capability for large-scale storage. However, the efficiency and storage flexibility of conventional LAES are significantly constrained by the air purification process. To improve the continuous storage capacity and economic viability of LAES, this paper proposes two enhanced processes, dual-compression LAES and medium-pressure expansion LAES, utilizing the backflow gas as purified purge gas. The design and operating parameters of liquefaction process were optimized using a genetic algorithm. The round-trip efficiency, system exergy efficiency, dynamic payback period, and levelized cost of electricity for the dual-compression LAES are 58.98 %, 65.9 %, 11 years, and 120.4 $/MWh, respectively, while those for the medium-pressure expansion LAES are 62.15 %, 68.17 %, 9 years, and 114.4 $/MWh, respectively. Additionally, the economic benefits of medium-pressure expansion LAES become more significant with higher off-peak electricity costs and a lower peak-valley electricity price ratio. The proposed processes are characterized by high efficiency and economic viability, without storage time constraints. The dual-compression process is simple to retrofit but has limited upgrade potential, making it suitable for existing LAES, whereas the medium-pressure expansion process offers more significant upgrades but requires extensive retrofitting, making it suitable for new LAES.
Keywords: Air purification system; Exergy efficiency; Genetic algorithm; Levelized cost of electricity; Dynamic payback period (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812401019X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s096014812401019x
DOI: 10.1016/j.renene.2024.120951
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().