EconPapers    
Economics at your fingertips  
 

Theoretical and experimental study of the high-frequency nonlinear dynamic response of a 10 MW semi-submersible floating offshore wind turbine

Haozhe Bai, Kun Xu, Min Zhang, Wenyong Yuan, Ruijia Jin, Wei Li, Shan Gao and Huajun Li

Renewable Energy, 2024, vol. 231, issue C

Abstract: To further investigate the hydrodynamic performance of a novel 10 MW semi-submersible floating offshore wind turbine (FOWT) OUCwind and the dynamic response of the FOWT, especially the high-frequency dynamic response induced by the high-order high-frequency hydrodynamic loads, an experimental study for OUCwind is carried out. A novel regular wave condition design method is proposed, i.e., making incidence wave periods that exactly meet an integer multiple of the natural period of the wind turbine, to stimulate the structural resonance of the tower. To determine the natural period of the wind turbine with an elastic boundary, an irregular wave test is carried out and the natural period of the wind turbine with the elastic boundary is proved to be 3 s. Different parts of the FOWT model are verified to satisfy the corresponding scale similarity through a series of validation tests. The hydrodynamic performance of OUCwind is investigated. Linear response is obtained by applying the band-pass filter to the total response. The pitch motions have apparent high-frequency components aligned with the natural frequency of the wind turbine under the environmental conditions with a wave periods of 6 s. For surge and heave motion, the linear component dominates these two responses and the effect of the high-frequency component on these two responses is negligible. The second-order doubling and third-order tripling wave effects have a tremendous impact on the tower-top shear force and mooring line tension. The experimental data providing high-frequency dynamic responses up to the quadruple order can be used for the validation and correction of mid-fidelity and high-fidelity numerical models. Finally, the mechanisms of the generation of the high-frequency dynamic response of the FOWT are also concluded in an illustrative form.

Keywords: Floating offshore wind turbine; Novel model test consideration; Hydrodynamic performance; High-frequency dynamic response; Tower resonance (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124010206
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010206

DOI: 10.1016/j.renene.2024.120952

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010206