Experimental analysis of the effects of feedstock composition on the plastic and biomass Co-gasification process
Mojtaba Ajorloo,
Maryam Ghodrat,
Jason Scott and
Vladimir Strezov
Renewable Energy, 2024, vol. 231, issue C
Abstract:
Co-gasification is a feasible approach to manage fast-growing plastic and biomass waste issues. The current work examines air gasification of plastic waste blending with biomass. The influence of plastic-type and biomass characteristics on product distribution under the same operating condition was studied. Ethylene-vinyl acetate, high-density polyethylene, and polypropylene were the investigated plastics while the biomass materials considered were pine sawdust (PS), used ground coffee (UGC), and wheat straw (WS) are compared. Additionally, co-gasification and thermogravimetric analyses (TGA) of plastic and individual biomass components, namely, cellulose, hemicellulose, and lignin, were conducted to identify the nature of the synergy arising from plastic and biomass integration. Similarities in the chemical structure and composition of the investigated plastics resulted in the type of plastic marginally influencing product distribution. The gas composition included 4.6 vol% CH4, 37.5 % CO2, 5.3 % CnHm, 42 % CO, and 10.8 % H2, with yields of 5.9 wt% char, 39.5 wt% gas, and 54.8 wt% tar. Conversely, the type of biomass had a substantial effect on both gas composition and product yields. WS and UGC, characterized by higher hemicellulose and lignin content, generated more hydrogen with 14.4 and 13.3 vol%, respectively, and exhibited lower tar content (45.7 and 47.8 wt%) compared to PS, which has a higher cellulose content and yielded 54.8 wt% tar. During EVA/cellulose co-gasification, the predominant gases produced are CO and CO2, with H2 concentration of 7.2 vol%. In contrast, co-gasification of EVA/xylan and EVA/lignin yields 13.5 and 19.9 vol% hydrogen, respectively. Interactions and synergism between the plastic and biomass were found to be more intensified when the biomass contained greater proportions of cellulose and lignin. Co-gasification and TGA analyses indicated that plastic/cellulose and plastic/lignin interactions in the gas and solid phases (volatile-volatile and volatile-char interactions) and plastic/xylan interactions in the gas phase (volatile-volatile interactions) were significant. Modeling the predictability of the output data revealed that if interactions between the plastic and biomass components are accounted for, the co-gasification results are predictable with a credible accuracy for all biomass types. The predictability model offers a practical approach for selecting an appropriate co-gasification feedstock combination to give a targeted process performance.
Keywords: Co-gasification; Biomass; Waste plastic; Waste management; Thermochemical recycling (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124010280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010280
DOI: 10.1016/j.renene.2024.120960
Access Statistics for this article
Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides
More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().