EconPapers    
Economics at your fingertips  
 

Exploring and understanding the microwave-assisted pyrolysis of waste lignocellulose biomass using gradient boosting regression machine learning model

Shruti Sinha, Chinta Sankar Rao, Abhishankar Kumar, Dadi Venkata Surya and Tanmay Basak

Renewable Energy, 2024, vol. 231, issue C

Abstract: The production of bio-oil is a complex process influenced by various parameters. Optimizing these parameters can significantly enhance bio-oil yield, thus improving process efficiency. This study aims to develop a predictive model for bio-oil yield using the Gradient Boosting Regression (GBR) technique. It also seeks to identify the key factors affecting bio-oil yield and determine the optimal conditions for maximizing production. The GBR model was constructed using data collected from the literature. The model's performance was evaluated based on its determination coefficients for training and testing datasets. Optimization studies were conducted to identify the best conditions for bio-oil production. The GBR model demonstrated high precision, with determination coefficients of 0.983 and 0.913 for the training and testing datasets, respectively, indicating its effectiveness in predicting bio-oil yield. The optimal conditions for maximizing bio-oil yield were identified as 20 min of pyrolysis time, a temperature of 771 °C, and 524W of microwave power. The two-way PDP analysis provided valuable insights into the interactive effects of temperature with other factors, enhancing the understanding of the dynamics of the bio-oil production process. This study not only identifies the most impactful variables for bio-oil yield but also offers critical guidance for optimizing the production process.

Keywords: Microwave-assisted pyrolysis; Machine learning; Gradient boosting regression; Lignocellulose biomass; Bio-oil (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096014812401036X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s096014812401036x

DOI: 10.1016/j.renene.2024.120968

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s096014812401036x