EconPapers    
Economics at your fingertips  
 

Experimental study on concentrated light photothermal catalytic glycerol for hydrogen production using a novel linear concentrated light flow reactor

Linhao Wang, Dongqiang Lei, Puning Ren, Yue Lv, Nengchao Luo and Zhifeng Wang

Renewable Energy, 2024, vol. 231, issue C

Abstract: Developing a suitable scale-up photothermal reactor is important for the application of solar photothermal catalytic hydrogen(H2) production from biomass. Herein, Ru nanoparticles loaded on TiO2 were used as photocatalysts to catalyze hydrogen production from glycerol. A novel linear concentrated light flow reactor (LCLFR) was designed and installed. The effects of concentrated light intensity and thermal energy were investigated on the hydrogen production performance of LCLFR. The optical performance of the reactor was evaluated using Monte Carlo ray tracing method and experimentally validated. The spectral absorption and the photothermal conversion properties of Ru/TiO2 photocatalysts in the LCLFR were analyzed with different concentration light intensity. The results showed that both concentrated light and temperature could significantly enhance the hydrogen production performance of glycerol catalyzed by Ru/TiO2. Notably, the promotion of hydrogen production rates by concentrated light becomes stronger at elevated temperatures.

Keywords: Linear concentrated light flow reactor; Photothermal catalysis; Glycerol; Hydrogen production; Heat collection (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124010486
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010486

DOI: 10.1016/j.renene.2024.120980

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010486