EconPapers    
Economics at your fingertips  
 

Fault diagnosis of a wave energy converter gearbox based on an Adam optimized CNN-LSTM algorithm

Jichuan Kang, Xu Zhu, Li Shen and Mingxin Li

Renewable Energy, 2024, vol. 231, issue C

Abstract: The complex structure and harsh operating environment of wave energy converters can result in various faults in transmission components. Environmental noise in practical operating situations may obscure the effective information in collected vibration signals, significantly increasing the difficulty of fault diagnosis. This paper presents a fault diagnosis model for the gearbox of the point absorber wave energy converter. The model integrates a convolutional neural network with long short-term memory to realize efficient extraction of local features from signals and enhance the performance in time-series analysis. Moreover, the model incorporates the Adaptive Moment Estimation algorithm to address the situations where gradients within tensors exhibit unstable changes in the model. A rigid-flexible coupled dynamics simulation model is developed to simulate vibration signals used to train and verify the fault diagnosis model. Experimental tests of the proposed model on a vibration dataset acquired from real vibration experiments demonstrate its efficacy in diagnosing various types of faults under interference of operating conditions. Comparative studies with other models demonstrate the superiority of the proposed model in terms of fault feature extraction, learning convergence efficiency, and diagnostic accuracy, indicating that the proposed model can achieve faster and more accurate fault diagnosis of wave energy converter gearboxes.

Keywords: Wave energy converter; Gearbox; Fault diagnosis; Deep learning; CNN-LSTM; Renewable energy (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960148124010905
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010905

DOI: 10.1016/j.renene.2024.121022

Access Statistics for this article

Renewable Energy is currently edited by Soteris A. Kalogirou and Paul Christodoulides

More articles in Renewable Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-06
Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010905